Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1954: 255-268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30864138

RESUMO

The donor substrates for the biosynthesis of bacterial polysaccharides include UDP-Glc/Gal and UDP-GlcNAc/GalNAc. The conversion of these nucleotide sugars is catalyzed by 4-epimerases. The wbpP gene of Pseudomonas aeruginosa encodes a 4-epimerase that has a preference for UDP-GlcNAc/GalNAc as substrates. Other 4-epimerases have broad specificities or preference for UDP-Glc/Gal. We have developed coupled assays where the 4-epimerase product is used as a donor substrate for glycosyltransferases that are highly specific for the nucleotide sugar structure. We describe here a method for the study of substrate specificity of WbpP, using coupled assays employing four different glycosyltransferases. These protocols can be applied to the identification and characterization of novel 4-epimerases and to determine their substrate specificities.


Assuntos
Ensaios Enzimáticos/métodos , Glicosiltransferases/metabolismo , Pseudomonas aeruginosa/enzimologia , Racemases e Epimerases/metabolismo , Polissacarídeos Bacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo , Especificidade por Substrato
2.
Glycoconj J ; 35(6): 525-535, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30293150

RESUMO

Archaea are ubiquitous single-cell microorganisms that have often adapted to harsh conditions and play important roles in biogeochemical cycles with potential applications in biotechnology. Methanococcus maripaludis, a methane-producing archaeon, is motile through multiple archaella on its cell surface. The major structural proteins (archaellins) of the archaellum are glycoproteins, modified with N-linked tetrasaccharides that are essential for the proper assembly and function of archaella. The aglW gene, encoding the putative 4-epimerase AglW, plays a key role in the synthesis of the tetrasaccharide. The goal of our work was to biochemically demonstrate the 4-epimerase activity of AglW, and to develop assays to determine its substrate specificity and properties. We carried out assays using UDP-Galactose, UDP-Glucose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and N-acetylglucosamine/N-acetylgalactosamine-diphosphate - lipid as substrates, coupled with specific glycosyltransferases. We showed that AglW has a broad specificity towards UDP-sugars and that Tyr151 within a conserved YxxxK sequon is essential for the 4-epimerase function of AglW. The glycosyltransferase-coupled assays are generally useful for the identification and specificity studies of novel 4-epimerases.


Assuntos
Mathanococcus/enzimologia , Racemases e Epimerases/metabolismo , Vias Biossintéticas , Lectinas/metabolismo , Proteínas Mutantes/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/química , Racemases e Epimerases/antagonistas & inibidores , Racemases e Epimerases/química , Racemases e Epimerases/isolamento & purificação , Análise de Sequência de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...